Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Biol Chem ; 94: 107570, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385342

ABSTRACT

The base order-dependent component of folding energy has revealed a highly conserved region in HIV-1 genomes that associates with RNA structure. This corresponds to a packaging signal that is recognized by the nucleocapsid domain of the Gag polyprotein. Long viewed as a potential HIV-1 "Achilles heel," the signal can be targeted by a new antiviral compound. Although SARS-CoV-2 differs in many respects from HIV-1, the same technology displays regions with a high base order-dependent folding energy component, which are also highly conserved. This indicates structural invariance (SI) sustained by natural selection. While the regions are often also protein-encoding (e. g. NSP3, ORF3a), we suggest that their nucleic acid level functions can be considered potential "Achilles heels" for SARS-CoV-2, perhaps susceptible to therapies like those envisaged for AIDS. The ribosomal frameshifting element scored well, but higher SI scores were obtained in other regions, including those encoding NSP13 and the nucleocapsid (N) protein.


Subject(s)
COVID-19/virology , RNA Folding , RNA, Viral/chemistry , SARS-CoV-2/genetics , Base Sequence , Genome, Viral , RNA, Viral/genetics , RNA, Viral/metabolism
2.
BMC Bioinformatics ; 22(1): 182, 2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1175288

ABSTRACT

BACKGROUND: The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS: We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS: Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.


Subject(s)
Proteome , SARS-CoV-2/genetics , Sequence Homology , COVID-19 Vaccines , Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Phosphoproteins/immunology , Phylogeny , RNA-Dependent RNA Polymerase/immunology , Risk Factors , Spike Glycoprotein, Coronavirus/immunology , Viral Nonstructural Proteins/immunology
3.
Comput Struct Biotechnol J ; 18: 2117-2131, 2020.
Article in English | MEDLINE | ID: covidwho-723392

ABSTRACT

There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.

4.
SSRN ; : 3541361, 2020 Feb 25.
Article in English | MEDLINE | ID: covidwho-679323

ABSTRACT

Effective countermeasures against the recent emergence and rapid expansion of the 2019-Novel Coronavirus (2019-nCoV) require the development of data and tools to understand and monitor viral spread and immune responses. However, little information about the targets of immune responses to 2019-nCoV is available. We used the Immune Epitope Database and Analysis Resource (IEDB) resource to catalog available data related to other coronaviruses, including SARS-CoV, which has high sequence similarity to 2019-nCoV, and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in 2019-nCoV that have high homology to SARS virus. Parallel bionformatic predictions identified a priori potential B and T cell epitopes for 2019-nCoV. The independent identification of the same regions using two approaches reflects the high probability that these regions are targets for immune recognition of 2019-nCoV.

5.
Cell Host Microbe ; 27(4): 671-680.e2, 2020 04 08.
Article in English | MEDLINE | ID: covidwho-8785

ABSTRACT

Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , COVID-19 , Databases, Protein , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Pandemics , SARS-CoV-2 , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL